of the molecule leads to r.m.s. distances for the corresponding atoms of 0.120 and $0.094 \AA$ for molecule (I) and (II), respectively. The molecular packing of the compound, Fig. 2, displays no intermolecular approaches with distances less than the sum of the van der Waals radii.

The author thanks Professor M. Wieber for encouraging this investigation, for crystals of the compound and for discussions. This work was supported by the Deutsche Forschungsgemeinschaft. The calculations were made with computers Telefunken TR4 (treatment of the data) and UNIVAC 1108 (X-RAY system) at the Computer Center of the University of Stuttgart. The program ORTEP was run with a Telefunken TR 440 of the Gesellschaft für Mathematik und Datenverarbeitung m.b.H. at Darmstadt.

References

Berry, R. S. (1960). J. Chem. Phys. 32, 933-938.
Cromer, D. \& Mann, J. (1968). Acta Cryst. A 24, 321-324.

Gillespie, P., Hoffmann, P., Klusacek, H., Marquarding, D., Pfohl, S., Ramirez, F., Tsolis, E. A. \& Ugi, I. (1971). Angew. Chem. 83, 691-721.

Hirshfeld, F. L. \& Rabinovich, D. (1973). Acta Cryst. A29, 510-513.
Hoffmann, R., Howell, J. M. \& Muetterties, E. L. (1972). J. Amer. Chem. Soc. 94, 3047-3058.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Kepert, D. I. (1973). Inorg. Chem. 12, 1942-1944.
Spratley, R. D., Hamilton, W. C. \& Ladell, J. (1967). J. Amer. Chem. Soc. 89, 2272-2278.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Wieber, M. \& Hoos, W. R. (1968). Tetrahedron Lett. 51, 5333-5334.
Wunderlich, H. \& Mootz, D. (1973). First European Crystallographic Meeting. Bordeaux.
Wunderlich, H. \& Mootz, D. (1974). Acta Cryst. B30, 935-939.
Wunderlich, H., Mootz, D., Schmutzler, R. \& Wieber, M. (1974). Z. Naturforsch. In the press.

X-RAY (1972). Technical Report TR-192 of the Computer Science Center, Univ. of Maryland, June 1972.
Zemann, J. (1963). Z. anorg. allgem. Chem. 324, 241-249.

Acta Cryst. (1974). B30, 945

The Two-Dimensional Tunnel Structures of $\mathbf{K}_{3} \mathbf{S b}_{5} \mathbf{O}_{14}$ and $\mathbf{K}_{2} \mathbf{S b}_{4} \mathbf{O}_{11}$ *

By H.Y.-P. Hong
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173, U.S.A.

(Received 22 October 1973; accepted 3 December 1973)

Abstract

The structures of $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ and $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ have been solved by the single-crystal X-ray direct method and the heavy-atom method, respectively. The structure of $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ is orthorhombic, with space group Pbam and cell parameters $a=24.247$ (4), $b=7 \cdot 157$ (2), $c=7 \cdot 334$ (2) $\AA, Z=4$. The structure of $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ is monoclinic, with space group $C 2 / m$ and cell parameters $a=19.473$ (4), $b=7 \cdot 542$ (1), $c=7 \cdot 198$ (1) \AA, $\beta=94.82(2)^{\circ}, Z=4$. A full-matrix least-squares refinement gave $R=0.072$ and $R=0.067$, respectively. In both structures, oxygen atoms form an octahedron around each Sb atom and an irregular polyhedron around each K atom. By sharing corners and edges, the octahedra form a skeleton network having intersecting b-axis and c-axis tunnels. The K^{+}ions, which have more than ten oxygen near neighbors, are located in these tunnels. Evidence for K^{+}-ion transport within and between tunnels comes from ion exchange of the alkali ions in molten salts and anisotropic temperature factors that are anomalously large in the directions of the tunnels.

Introduction

Unlike Nb^{5+} and Ta^{5+}, the Sb^{5+} ion does not form structures having $180^{\circ} \mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ linkages (Goodenough \& Kafalas, 1973). Thus KSbO_{3} does not form the cubic perovskite structure. At atmospheric pressure it generally has the rhombohedral ilmenite structure. However, Spiegelberg (1940) reported synthesiz-

[^0]ing two cubic phases of KSbO_{3} by annealing the ilmenite KSbO_{3} for 3 weeks at $1000^{\circ} \mathrm{C}$ in a porcelain crucible. The structure of one of these, Pn3, was determined by him. The structure of the other, $\operatorname{Im} 3$, was elucidated by the present author (Hong, Kafalas \& Goodenough, 1973). Both cubic structures contain $\mathrm{Sb}_{2} \mathrm{O}_{10}$ edge-shared octahedra. These octahedral-site pairs share corners to form a three-dimensional skeleton structure containing empty tunnels of face-shared octahedra that run parallel to the cubic diagonals. In the Pn3 structure, the K^{+}ions are ordered on the
octahedral sites of these tunnels, while in $\operatorname{Im} 3$ the K^{+} ions are distributed randomly on these octahedral sites. The $\operatorname{Im} 3-\mathrm{KSbO}_{3}$ structure can be ion-exchanged (Hong et al., 1973) to $\mathrm{MSbO}_{3}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{Rb}, \mathrm{Ag}, \mathrm{Tl})$ in molten salt.

The Sb^{5+} ion, preferring to form pairs of edgeshared oxygen octahedra, should produce other examples of three-dimensional networks containing large-mouth tunnels or voids. Such skeleton structures are of potential interest for fast-ion transport (Hong et al., 1973). We have therefore synthesized two compounds, $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ and $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$, to demonstrate other skeleton structures built by these $\mathrm{Sb}_{2} \mathrm{O}_{10}$ pairs of edge-shared octahedra. The structure of $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ was solved by the direct method in space group Pbam, which is different from that previously reported (Aurivillius, 1966) as $P b a 2$. The $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ compound was synthesized and its structure determined for the first time.

Experimental procedure

Single crystals of $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ were obtained by first heating overnight at $800^{\circ} \mathrm{C}$ in platinum crucibles $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Sb}_{2} \mathrm{O}_{3}$ in the molar ratio 3:5. The product was then ground and fired at $1100^{\circ} \mathrm{C}$ for two days. A number of square-plate, single crystals were formed in this preparation. The thickness of a plate, which is the direction of the longest axis, was about one-third of its square edge.

The compound $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ was discovered by a wet preparation. A saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ water solution was neutralized by SbCl_{5}. The white precipitate was evaporated slowly to dryness, then fired up to $600^{\circ} \mathrm{C}$ overnight, ground and refired at $1100^{\circ} \mathrm{C}$ for two days. The single crystals formed in this procedure have a crystal habit similar to that of $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$. The square edge was about 0.1 mm to 0.5 mm in both compounds.

For X-ray diffraction studies, a small crystal of each compound was mounted on a goniometer head. The $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ crystal measured $0.05 \times 0.15 \times 0.15 \mathrm{~mm}$ and was mounted about the c axis $(0.15 \mathrm{~mm})$, while the $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ crystal measured $0.03 \times 0.10 \times 0.10 \mathrm{~mm}$ and was mounted about the b axis $(0.1 \mathrm{~mm})$. Oscillation and Weissenberg photographs showed diffraction symmetry $m m m$ for $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$, and the systematic absences were $0 k l, k=2 n+1$, and $h 0 l, h=2 n+1$, which is consistent with space groups Pba2 and Pbam. For $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$, the diffraction symmetry is $2 / m$ and the systematic absences were $h k l, h+k=2 n+1$, which is consistent with space groups $C m, C 2$ and $C 2 / m$.

Three-dimensional intensity data to $20 \leq 50^{\circ}$ were collected - a total of 952 independent reflections for $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ and 1003 independent reflections for $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ - by the stationary-crystal, stationarycounter method using Zr -filtered Mo $K \alpha$ radiation and a 5° take-off angle. Each peak was counted for 10 s and the background (at 2° below the 2θ value of the peak) was also counted for 10 s . Lorentz, polarization and φ-angle absorption corrections were applied. The
intensity variation on the φ angle was within 15% for $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ and 20% for $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$. The equation

$$
\sigma(F)=\frac{1}{2}\left[K \frac{1+I_{B} / I_{P}}{1-I_{B} / I_{P}}\right]^{1 / 2}
$$

was used to estimate the variance for the structure factors, where I_{B} is the background count, I_{P} is the peak count, and K is the product of the Lorentz, polarization and absorption corrections.

Structure determinations

$\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$

The direct method for determination of phases was used in the solution of this structure. First, a Wilson plot was constructed. This plot provided an approximate scale factor and also indicated a centric distribution of intensities so that the space group Pbam was chosen. The sequence of computer programs FAME-MAGIC-LINK-SYMPL (R. Dewar \& A. Stone, Univ. of Chicago) was used to generate 250 phases from seven symbol-assigned reflections. Two E maps were generated using different sign combinations for the symbolic assignments, and the correct map was ascertained by checking interactions between the largest peaks against the Patterson map. The correct E map displayed a uniform distribution of peak heights, and the heights were in the appropriate ratio of the atomic numbers of the atoms. Two independent K and three independent Sb positions were clearly visible; the oxygen atoms could not be unambiguously assigned as there were a number of spurious peaks with heights equivalent to those of the oxygen atoms. A structurefactor calculation based on the K and Sb positions gave a value of 0.18 for the discrepancy index $R=$

Table 1. Final atomic parameters and isotropic temperature factors in $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$

$$
\begin{gathered}
\text { Space group: Pbam, } Z=4 . \\
\text { Unit-cell dimensions: } \\
a=24 \cdot 247(4), b=7 \cdot 157 \text { (2), } c=7 \cdot 334 \text { (2) } \AA .
\end{gathered}
$$

Standard deviations are given in parentheses.

	x	y	z	$\beta\left(\AA^{2}\right)$
K(1)	$0 \cdot 0152$ (6)	0.219 (2)	$\frac{1}{2}$	$4 \cdot 7$ (3)
K(2)	$0 \cdot 2934$ (6)	$0 \cdot 111$ (2)	0	$5 \cdot 6$ (3)
K(3)	0.3839 (6)	$0 \cdot 102$ (2)	2	$4 \cdot 5$ (3)
Sb (1)	0.0570 (1)	$0 \cdot 4169$ (5)	0	$0 \cdot 51$ (5)
Sb (2)	0.4379 (1)	$0 \cdot 4045$ (5)	0	$0 \cdot 60$ (5)
Sb(3)	$0 \cdot 2564$ (1)	$0 \cdot 3249$ (4)	$\frac{1}{2}$	$0 \cdot 51$ (5)
$\mathrm{Sb}(4)$	$0 \cdot 14506$ (9)	$0 \cdot 1086$ (3)	$0 \cdot 2646$ (3)	0.51 (4)
$\mathrm{O}(1)$	0	$\frac{1}{2}$	$0 \cdot 159$ (4)	$2 \cdot 7$ (7)
$\mathrm{O}(2)$	0.017 (1)	$0 \cdot 156$ (4)	0	$1 \cdot 6$ (6)
$\mathrm{O}(3)$	$0 \cdot 117$ (1)	$0 \cdot 175$ (5)	$\frac{1}{2}$	$2 \cdot 5$ (7)
$\mathrm{O}(4)$	0.136 (1)	0.024 (5)	0	$2 \cdot 8$ (7)
$\mathrm{O}(5)$	0.279 (1)	0.066 (4)	$\frac{1}{2}$	1.5 (6)
O(6)	$0 \cdot 410$ (1)	$0 \cdot 154$ (5)	0	2.9 (7)
O(7)	$0 \cdot 1046$ (9)	0.336 (3)	$0 \cdot 188$ (3)	$2 \cdot 0$ (4)
$\mathrm{O}(8)$	0.2096 (8)	$0 \cdot 254$ (3)	0.284 (2)	$1 \cdot 4$ (3)
O(9)	0.3150 (8)	0.379 (3)	$0 \cdot 316$ (2)	$1 \cdot 6$ (4)
$\mathrm{O}(10)$	$0 \cdot 4249$ (8)	$0 \cdot 460$ (3)	$0 \cdot 251$ (3)	$2 \cdot 2$ (4)

$\sum\left|F_{o}-F_{c}\right| / \sum\left|F_{o}\right|$. A Fourier map immediately revealed the positions of eight independent oxygen atoms. The atom parameters, scale and isotropic temperature fac-

Table 2. Distances (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ Octahedron around $\mathrm{Sb}(1)$

$\mathrm{Sb}(1)-\mathrm{O}(1)$	2×1.90 (2)	$\mathrm{O}(1)-\mathrm{O}(1)$	$2 \cdot 33$ (6)
$\mathrm{Sb}(1)-\mathrm{O}(7)$	2×1.89 (2)	$\mathrm{O}(1) \mathrm{O}(2)$	2.76 (3)
$\mathrm{Sb}(1)-\mathrm{O}(2)$	$2 \cdot 10$ (3)	$\mathrm{O}(1)-\mathrm{O}(6)$	2.71 (3)
$\mathrm{Sb}(1)-\mathrm{O}(6)$	$1 \cdot 88$ (3)	$\mathrm{O}(1)-\mathrm{O}(7)$	$2 \cdot 80$ (2)
$\mathrm{Sb}(1)-\mathrm{Sb}(2)$	3.009 (5)	$\mathrm{O}(2)-\mathrm{O}(6)$	$3 \cdot 89$ (4)
$\mathrm{Sb}(1)-\mathrm{Sb}(2)$	$3 \cdot 492$ (5)	$\mathrm{O}(2)-\mathrm{O}(7)$	$2 \cdot 84$ (3)
$\mathrm{Sb}(1) \mathrm{Sb}(4)$	$3 \cdot 632$ (3)	$\mathrm{O}(6)-\mathrm{O}(7)$	$2 \cdot 68$ (4)
Octahedron around $\mathrm{Sb}(2)$			
$\mathrm{Sb}(2)-\mathrm{O}(10)$	2×1.91 (2)	$\mathrm{O}(2)-\mathrm{O}(2)$	$2 \cdot 38$ (6)
$\mathrm{Sb}(2)-\mathrm{O}(2)$	1.97 (2)	$\mathrm{O}(2)-\mathrm{O}(4)$	$3 \cdot 93$ (4)
$\mathrm{Sb}(2)-\mathrm{O}(2)$	$2 \cdot 11$ (3)	$\mathrm{O}(2)-\mathrm{O}(6)$	2.93 (4)
$\mathrm{Sb}(2)-\mathrm{O}(4)$	1.99 (3)	$\mathrm{O}(2)-\mathrm{O}(10)$	2.71 (3)
$\mathrm{Sb}(2)-\mathrm{O}(6)$	1.92 (3)	$\mathrm{O}(4)-\mathrm{O}(6)$	2.87 (5)
$\mathrm{Sb}(2)-\mathrm{Sb}(4)$	$3 \cdot 154$ (3)	$\mathrm{O}(4)-\mathrm{O}(10)$	$2 \cdot 40$ (3)
$\mathrm{Sb}(2)-\mathrm{Sb}(2)$	$3 \cdot 307$ (5)	$\mathrm{O}(6)-\mathrm{O}(10)$	$2 \cdot 83$ (3)
Octahedron around $\mathrm{Sb}(3)$			
$\mathrm{Sb}(3)-\mathrm{O}(8)$	2×2.01 (2)	$\mathrm{O}(5)-\mathrm{O}(5)$	$3 \cdot 84$ (2)
$\mathrm{Sb}(3)-\mathrm{O}(9)$	2×2.00 (2)	$\mathrm{O}(5)-\mathrm{O}(8)$	$2 \cdot 68$ (3)
$\mathrm{Sb}(3) \mathrm{O}(5)$	1.93 (3)	$\mathrm{O}(5)-\mathrm{O}(8)$	2.75 (3)
$\mathrm{Sb}(3)-\mathrm{O}(5)$	1.93 (3)	$\mathrm{O}(5)-\mathrm{O}(9)$	2.97 (3)
$\mathrm{Sb}(3)-\mathrm{Sb}(3)$	$3 \cdot 592$ (1)	$\mathrm{O}(5)-\mathrm{O}(9)$	2.76 (3)
$\mathrm{Sb}(3)-\mathrm{Sb}(4)$	$3 \cdot 558$ (3)	$\mathrm{O}(8)-\mathrm{O}(9)$	2.72 (3)
$\mathrm{Sb}(3)-\mathrm{Sb}(4)$	$3 \cdot 579$ (3)	$\mathrm{O}(8)-\mathrm{O}(9)$	2.76 (3)
Octahedron around $\mathrm{Sb}(4)$			
$\mathrm{Sb}(4)-\mathrm{O}(3)$	1.92 (1)	$\mathrm{O}(3)-\mathrm{O}(7)$	$2 \cdot 58$ (3)
$\mathrm{Sb}(4)-\mathrm{O}(4)$	$2 \cdot 04$ (1)	$\mathrm{O}(3)-\mathrm{O}(8)$	$2 \cdot 80$ (3)
$\mathrm{Sb}(4)-\mathrm{O}(7)$	1.98 (2)	$\mathrm{O}(3)-\mathrm{O}(9)$	3.00 (3)
$\mathrm{Sb}(4)-\mathrm{O}(8)$	1.88 (2)	$\mathrm{O}(3)-\mathrm{O}(10)$	$2 \cdot 60$ (3)
$\mathrm{Sb}(4)-\mathrm{O}(9)$	1.94 (2)	$\mathrm{O}(4)-\mathrm{O}(7)$	2.73 (4)
$\mathrm{Sb}(4)-\mathrm{O}(10)$	$2 \cdot 00$ (2)	$\mathrm{O}(4)-\mathrm{O}(8)$	$3 \cdot 19$ (3)
$\mathrm{Sb}(4)-\mathrm{Sb}(2)$	$3 \cdot 154$ (3)	$\mathrm{O}(4)-\mathrm{O}(9)$	$2 \cdot 80$ (2)
$\mathrm{Sb}(4)-\mathrm{Sb}(1)$	$3 \cdot 632$ (3)	$\mathrm{O}(4)-\mathrm{O}(10)$	$2 \cdot 40$ (3)
$\mathrm{Sb}(4)-\mathrm{Sb}(3)$	$3 \cdot 558$ (3)	$\mathrm{O}(7)-\mathrm{O}(10)$	2.82 (3)
$\mathrm{Sb}(4)-\mathrm{Sb}(3)$	$3 \cdot 579$ (3)	$\mathrm{O}(9)-\mathrm{O}(10)$	$2 \cdot 77$ (3)

$\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ angles	
$\mathrm{Sb}(1)-\mathrm{O}(2)-\mathrm{Sb}(2)$	$121(1)$
$\mathrm{Sb}(2)-\mathrm{O}(2)-\mathrm{Sb}(2)$	$108(1)$
$\mathrm{Sb}(2)-\mathrm{O}(2)-\mathrm{Sb}(1)$	$129(1)$
$\mathrm{Sb}(2)-\mathrm{O}(4)-\mathrm{Sb}(4)$	$103 \cdot 0(7)$
$\mathrm{Sb}(4)-\mathrm{O}(4)-\mathrm{Sb}(6)$	$143(2)$
$\mathrm{Sb}(6)-\mathrm{O}(4)-\mathrm{Sb}(2)$	$103 \cdot 0(7)$

Polyhedron around $\mathrm{K}(1)$	
$\mathrm{K}(1)-\mathrm{O}(1)$	$2 \times 3.23(2)$
$\mathrm{K}(1)-\mathrm{O}(2)$	$2 \times 3.695(4)$
$\mathrm{K}(1)-\mathrm{O}(3)$	$1 \times 2.49(3)$
$\mathrm{K}(1)-\mathrm{O}(7)$	$2 \times 3.26(2)$
$\mathrm{K}(1)-\mathrm{O}(10)$	$2 \times 2.98(2)$
$\mathrm{K}(1)-\mathrm{O}(10)$	$2 \times 3.13(2)$

Table 3. Observed and calculated structure factors for $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$

tors were then refined with a full-matrix, least-squares program to a final R value of 0.072 for all reflections and a weighted $R_{w}=0.067$, where

$$
R_{w}=\left[\sum w\left(F_{o}-F_{c}\right)^{2} / \sum w F_{o}^{2}\right]^{1 / 2}, \quad w=1 / \sigma^{2}
$$

After this structure was solved, the author learned that Aurivillius (1966) had reported $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ as having space group Pba2. Based on this space group, a least-squares refinement on our data gave $R=0.075$ and $R_{w}=0.069$ with negative temperature factors for those atomic positions having z coordination other than 0 or $\frac{1}{2}$. This indicates that the c axis contains mirror planes at $z=0$ and $z=\frac{1}{2}$. Thus three pieces of evidence indicate that Pbam is the right space group: (1) a Wilson plot showed a center of symmetry, (2) with
more variable parameters $P b a 2$ gave the higher R index, (3) negative temperature factors appeared on those atomic positions that should have a mirror-symmetry operation.

The final atomic parameters and isotropic temperature factors are listed in Table 1. The bond distances and angles are listed in Table 2. Table 3 contains the structure factors.

$\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$

The composition of the $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ crystals was initially unknown. Nevertheless, because Sb is considerably heavier than either K or O , it was possible to solve the structure by using the heavy-atom method of structure analysis. A three-dimensional Patterson map was generated to distinguish between the three possible space groups $\mathrm{C} 2, \mathrm{Cm}$ and $\mathrm{C} 2 / \mathrm{m}$. If Cm is correct,

Table 4. Final atomic parameters and anisotropic temperature factors in $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$
Space group: $C 2 / m, Z=4$.
Unit-cell dimensions: $a=19.473$ (4), $b=7.542$ (1), $c=7.198$ (1) $\AA, \beta=94.82$ (2).
The temperature factor is $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
	x	y	$0.005(2)$	$0.0022(3)$	$0.017(2)$	$0.013(2)$	0	$0.0010(7)$	0
$\mathrm{~K}(1)$	$0.2383(9)$	0	0.017						
$\mathrm{~K}(2)$	$0.0103(6)$	0	$0.261(1)$	$0.0022(3)$	$0.019(3)$	$0.018(2)$	0	$0.0009(7)$	0
$\mathrm{Sb}(1)$	$0.4246(1)$	0	$0.3824(3)$	$0.00014(6)$	$0.0001(4)$	$0.0000(4)$	0	$0.0000(1)$	0
$\mathrm{Sb}(2)$	$0.4281(1)$	0	$0.9029(3)$	$0.00016(6)$	$0.0001(4)$	$0.0001(4)$	0	$0.0000(1)$	0
$\mathrm{Sb}(3)$	$0.17445(8)$	$0.2418(2)$	$0.4349(2)$	$0.00004(4)$	$0.0006(3)$	$0.0003(2)$	$0.0000(1)$	$0.00008(7)$	$0.0000(2)$
$\mathrm{O}(1)$	0	$0.335(3)$	0	$0.0006(6)$	$0.002(4)$	$0.011(5)$	0	$0.000(1)$	0
$\mathrm{O}(2)$	$0.160(1)$	0	$0.348(3)$	$0.0009(9)$	$0.011(6)$	$0.009(5)$	0	$0.000(1)$	0
$\mathrm{O}(3)$	$0.382(1)$	0	$0.131(4)$	$0.0013(9)$	$0.030(9)$	$0.007(5)$	0	$0.000(1)$	0
$\mathrm{O}(4)$	$0.335(1)$	0	$0.483(3)$	$0.0007(8)$	$0.011(6)$	$0.007(5)$	0	$0.000(1)$	0
$\mathrm{O}(5)$	$0.522(1)$	0	$0.353(3)$	$0.003(1)$	$0.012(6)$	$0.003(5)$	0	$0.001(1)$	0
$\mathrm{O}(6)$	$0.412(1)$	$0.257(3)$	$0.433(2)$	$0.0028(7)$	$0.005(3)$	$0.011(4)$	$0.000(1)$	$0.000(1)$	$0.002(3)$
$\mathrm{O}(7)$	$0.2654(9)$	$0.296(2)$	$0.342(2)$	$0.0017(6)$	$0.009(4)$	$0.006(3)$	$0.000(1)$	$0.000(1)$	$0.001(3)$
$\mathrm{O}(8)$	$0.1296(9)$	$0.309(2)$	$0.189(2)$	$0.0013(5)$	$0.005(3)$	$0.011(3)$	$0.000(1)$	$0.001(1)$	$0.003(3)$

Fig. 1. An $a b$ projection of the arrangement of SbO_{6} octahedra in $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$, showing the tunnels that run parallel to the b axis and the c axis. The shaded bars represent the narrowest point along or between tunnels.
then a large number of interactions should be observed on the section $[0, y, 0]$; and this was not the case: $\left(0, \frac{1}{2}, 0\right)$ is the only major peak. If $C 2$ is the right space group, there is no mirror symmetry to produce the ($0, \frac{1}{2}, 0$) peak, so $C 2 / m$ was chosen.

On the Patterson map, all major peaks appeared at y equal to $0, \frac{1}{4}$ and $\frac{1}{2}$, which indicated that the heavy atom Sb would be located at special positions. Based on the prior knowledge that Sb readily forms pairs of edge-shared octahedra, it was possible to build a model for testing. Three independent Sb positions were located to give $R=0 \cdot 24$. A Fourier map based on this model revealed two independent K positions and eight O atoms. The atomic positions, scale and anisotropic temperature factors were then refined with a fullmatrix, least-squares program to a final $R=0.067$ and $R_{w}=0.080$ for all reflections. A three-dimensional elec-tron-density difference map calculated with the par-

Table 5. Distances (\AA) and angles $\left({ }^{\circ}\right)$ in the structure of $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$
Octahedron around $\mathrm{Sb}(1)$

$\mathrm{Sb}(1)-\mathrm{O}(3)$	1.93 (3)	$\mathrm{O}(3)-\mathrm{O}(4)$	2.76 (3)
$\mathrm{Sb}(1)-\mathrm{O}(4)$	1.94 (2)	$\mathrm{O}(3)-\mathrm{O}(5)$	3.04 (3)
$\mathrm{Sb}(1)-\mathrm{O}(5)$	1.93 (2)	$\mathrm{O}(3)-\mathrm{O}(6)$	2.93 (3)
$\mathrm{Sb}(1)-\mathrm{O}(5)$	$2 \cdot 09$ (2)	$\mathrm{O}(4)-\mathrm{O}(5)$	$2 \cdot 93$ (3)
$\mathrm{Sb}(1)-\mathrm{O}(6)$	2×1.99 (2)	$\mathrm{O}(4)-\mathrm{O}(6)$	$2 \cdot 49$ (2)
$\mathrm{Sb}(1)-\mathrm{Sb}(3)$	$2 \times 3 \cdot 109$ (2)	$\mathrm{O}(5)-\mathrm{O}(6)$	$2 \cdot 98$ (2)
$\mathrm{Sb}(1)-\mathrm{Sb}(1)$	$3 \cdot 264$ (4)	$\mathrm{Sb}(1)-\mathrm{Sb}(2)$	3.741 (3)
$\mathrm{Sb}(1)-\mathrm{Sb}(2)$	$3 \cdot 458$ (2)	$\mathrm{Sb}(1)-\mathrm{Sb}(2)$	3.666 (3)
Octahedron around $\mathrm{Sb}(2)$			
$\mathrm{Sb}(2)-\mathrm{O}(1)$	2×1.958 (2)	$\mathrm{O}(1)-\mathrm{O}(1)$	2.489 (4)
$\mathrm{Sb}(2)-\mathrm{O}(8)$	2×1.91 (2)	$\mathrm{O}(1)-\mathrm{O}(3)$	$2 \cdot 84$ (2)
$\mathrm{Sb}(2)-\mathrm{O}(3)$	1.94 (3)	$\mathrm{O}(1)-\mathrm{O}(5)$	$2 \cdot 83$ (2)
$\mathrm{Sb}(2)-\mathrm{O}(5)$	$2 \cdot 15$ (2)	$\mathrm{O}(1)-\mathrm{O}(8)$	$2 \cdot 77$ (2)
$\mathrm{Sb}(2)-\mathrm{Sb}(2)$	$3 \cdot 022$ (4)	$\mathrm{O}(3)-\mathrm{O}(5)$	3.04 (3)
$\mathrm{Sb}(2)-\mathrm{Sb}(3)$	$2 \times 3 \cdot 588$ (2)	$\mathrm{O}(3)-\mathrm{O}(8)$	$2 \cdot 71$ (3)
		$\mathrm{O}(5)-\mathrm{O}(8)$	$2 \cdot 87$ (2)
Octahedron around $\mathrm{Sb}(3)$			
$\mathrm{Sb}(3)-\mathrm{O}(2)$	1.941 (7)	$\mathrm{O}(2)-\mathrm{O}(6)$	$2 \cdot 86$ (3)
$\mathrm{Sb}(3)-\mathrm{O}(4)$	2.048 (7)	$\mathrm{O}(2)-\mathrm{O}(7)$	$2 \cdot 98$ (2)
Sb (3)-O(6)	2.00 (2)	$\mathrm{O}(2)-\mathrm{O}(8)$	$2 \cdot 64$ (2)
$\mathrm{Sb}(3)-\mathrm{O}(7)$	1.93 (2)	$\mathrm{O}(4)-\mathrm{O}(6)$	$2 \cdot 49$ (2)
$\mathrm{Sb}(3)-\mathrm{O}(7)$	1.99 (2)	$\mathrm{O}(4)-\mathrm{O}(7)$	$2 \cdot 76$ (2)
$\mathrm{Sb}(3)-\mathrm{O}(8)$	1.97 (2)	$\mathrm{O}(4)-\mathrm{O}(8)$	$2 \cdot 80$ (2)
$\mathrm{Sb}(3)-\mathrm{Sb}(3)$	3.014 (3)	$\mathrm{O}(6)-\mathrm{O}(7)$	$2 \cdot 89$ (2)
		$\mathrm{O}(7)-\mathrm{O}(7)$	$2 \cdot 50$ (3)
		$\mathrm{O}(7)-\mathrm{O}(8)$	2.78 (2)

$\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ angles	
$\mathrm{Sb}(1)-\mathrm{O}(4)-\mathrm{Sb}(3)$	102.3
$\mathrm{Sb}(3)-\mathrm{O}(4)-\mathrm{Sb}(3)$	$144(1)$
$\mathrm{Sb}(3)-\mathrm{O}(4)-\mathrm{Sb}(1)$	102.3
$\mathrm{Sb}(1)-\mathrm{O}(5)-\mathrm{Sb}(1)$	$108(1)$
$\mathrm{Sb}(1)-\mathrm{O}(5)-\mathrm{Sb}(2)$	$123(1)$
$\mathrm{Sb}(2)-\mathrm{O}(5)-\mathrm{Sb}(1)$	$128(1)$
Polyhedron	around $\mathrm{K}(1)$
$\mathrm{K}(1)-\mathrm{O}(2)$	$1 \times 3.01(3)$
$\mathrm{K}(1)-\mathrm{O}(3)$	$1 \times 2.86(3)$
$\mathrm{K}(1)-\mathrm{O}(4)$	$1 \times 3.78(3)$
$\mathrm{K}(1)-\mathrm{O}(7)$	$2 \times 3.31(2)$
$\mathrm{K}(1)-\mathrm{O}(7)$	$2 \times 2.93(2)$
$\mathrm{K}(1)-\mathrm{O}(8)$	$2 \times 3.35(2)$
$\mathrm{K}(1)-\mathrm{O}(8)$	$2 \times 3.48(2)$

Table 6. Observed and calculated structure factors for $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$

ameters in Table 4 showed no physically significant peaks. It was then evident that the compound had the chemical formula $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ with four molecules per unit cell. The compound $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ can also be synthesized by heating a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $2 \mathrm{Sb}_{2} \mathrm{O}_{3}$ at $1100^{\circ} \mathrm{C}$ for two days. The bond distances and angles are listed in Table 5. Table 6 contains the observed and calculated structure factors.

Description of the structures

$\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$
The $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ structure is as described by Aurivil-
lius (1966) except for a mirror symmetry perpendicular to the c axis. It contains four $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ molecules with $\mathrm{Sb}(1)$ and $\mathrm{Sb}(2)$ atoms at $z=0$. As shown in Fig. 1, $\mathrm{Sb}(1)-\mathrm{Sb}(1)$ pairs of octahedra have a common edge in the $a b$ plane centered at a body corner or the center of an $a b$ face. Along the b axis, the $\mathrm{Sb}(1)-\mathrm{Sb}(1)$ pairs are joined by corner-sharing with $\mathrm{Sb}(2)-\mathrm{Sb}(2)$ pairs having their common edge parallel to the c axis. Chains of corner-shared $\mathrm{Sb}(3)$ octahedra centered at $z=\frac{1}{2}$ also run parallel to the b axis. The $\mathrm{Sb}(1)-\mathrm{Sb}(2)$ ribbons and $\mathrm{Sb}(3)$ chains are connected only by $\mathrm{Sb}(4)$ octahedra centered at $z=26,74$ and sharing a common edge with an $\mathrm{Sb}(1)$ octahedron, common corners with an $\mathrm{Sb}(2)$ and two $\mathrm{Sb}(3)$ octahedra.

The oxygen atoms $O(2)$ and $O(4)$ are each common to three octahedra (see circles in Fig. 1). The O(4) atom is common to two corner-shared $\mathrm{Sb}(4)$ octahedra, one above the other along z , as well as to an $\mathrm{Sb}(1)$ octahedron. All other oxygen atoms are common to only two octahedra. This sharing of the oxygen atoms is compatible with an O / Sb ratio of $2 \cdot 8$.

The $\left(\mathrm{Sb}_{5} \mathrm{O}_{14}\right)^{3-}$ skeleton has tunnels parallel to the c axis that contain, zigzag fashion, the K^{+}-ion positions $\mathrm{K}(2)$ and $\mathrm{K}(3)$. These c-axis tunnels are intersected by b-axis tunnels containing positions K(1). The
position $\mathrm{K}(3)$ can be considered common to a c-axis and a b-axis tunnel.
$\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$
The $\left(\mathrm{Sb}_{4} \mathrm{O}_{11}\right)^{2-}$ skeleton of the $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ structure is entirely built from pairs of edge-shared octahedra. The $\mathrm{Sb}(1)-\mathrm{Sb}(1)$ and $\mathrm{Sb}(3)-\mathrm{Sb}(3)$ pairs have their common edge in the $a c$ plane whereas the $\mathrm{Sb}(2)-\mathrm{Sb}(2)$ pairs have their common edge parallel to the b axis, as can be seen from Figs. 2 and 3. The $\mathrm{Sb}(1)-\mathrm{Sb}(1)$ and $\mathrm{Sb}(2)-\mathrm{Sb}(2)$ pairs share common corners to form ribbons at $y=0, \frac{1}{2}$ running parallel to the c axis at $x=\frac{1}{2}$ and 0 , respectively. These ribbons are bridged by $\mathrm{Sb}(3)-$ $\mathrm{Sb}(3)$ pairs, which form corner-shared columns parallel to the b axis. The $\mathrm{Sb}(3)-\mathrm{Sb}(3)$ pairs share common octahedral-site edges with $\mathrm{Sb}(1)-\mathrm{Sb}(1)$ pairs, common corners with $\mathrm{Sb}(2)-\mathrm{Sb}(2)$ pairs. This skeleton structure produces tunnels parallel to both the b and c axes, and the K^{+}ions are located in these tunnels. The irregular polyhedra around the $\mathrm{K}(1)$ and $\mathrm{K}(2)$ positions contain more than ten oxygen atoms, and the $\mathrm{K}-\mathrm{O}$ distances are all longer than $2.76 \AA$, the sum of the ionic radii. From Table 5, the shortest $\mathrm{K}-\mathrm{O}$ distance is $\mathrm{K}(1)-\mathrm{O}(3)=2.86 \AA$.

From Table 4, the temperature factors are anoma-

Fig. 2. An $a c$ projection of the arrangement of SbO_{6} octahedra in $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$, showing the tunnels formed along the b axis. The shaded bars are the narrowest points along or between tunnels.
lously larger for $\mathrm{K}(1)$ and $\mathrm{K}(2)$ than for the Sb atoms. Moreover, the thermal motions of $\mathrm{K}(1)$ and $\mathrm{K}(2)$ along the b axis, which are about the same as those along the c axis, are eight times bigger than those along the a axis. This anomalous thermal motion along the b and c axes indicates that a K^{+}ion can move within and between tunnels.

The $O(4)$ and $O(5)$ anions (see circles in Fig. 2) are common to three octahedra: two $\mathrm{Sb}(3)$ and an $\mathrm{Sb}(1)$; two $\mathrm{Sb}(1)$ and one $\mathrm{Sb}(2)$, respectively. All the other oxygen atoms are common to only two octahedra. This type of sharing is consistent with an O / Sb ratio of $\frac{11}{4}$.

Discussion

The $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ and $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ structures have two-dimensional tunnels. In both structures, the K^{+}ions are located in intersecting b-axis and c-axis tunnels. Although the K positions are fully occupied, there are a number of interstitial voids existing in the skeleton, so that K^{+}ions may be transported in and between tunnels. These interstitial positions, large $\mathrm{K}-\mathrm{O}$ distances,
and anomalous temperature factors are consistent with the fact that both compounds can be ion-exchanged by $\mathrm{Na}^{+}, \mathrm{Ag}^{+}, \mathrm{Rb}^{+}$and Tl^{+}in molten salts. The skeletons are all intact after ion-exchange, except that $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ transforms to $\mathrm{Na}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ in molten NaNO_{3}. This transformation is apparently due to the fact that the Na^{+}ion is too small to support the $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$ skeleton, especially as the $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$ skeleton is intrinsically more stable because all its octahedra are paired by edge-sharing.

The narrowest point along the tunnels, designated herein as 'bottle-necks', can be used as a criterion for fast-ion transport. In $\mathrm{K}_{3} \mathrm{Sb}_{5} \mathrm{O}_{14}$, the bottle-neck along the b tunnels, the c tunnels and from a b tunnel to a c tunnel are rectangular planes having shortest $\mathrm{K}-\mathrm{O}$ distances of $2 \cdot 66,2 \cdot 30$, and $2 \cdot 69 \AA$, respectively. (In Fig. 1, the bottle-necks are indicated by the heavy lines.) From these distances we can expect the K^{+}ions to move within the b tunnel or from a b tunnel to a c tunnel, but they will transport along the c tunnels with a higher activation energy. In $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$, the bottleneck along the b tunnels and the c tunnels and from a

Fig. 3. An $a b$ projection of the arrangement of SbO_{6} octahedra in $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{O}_{11}$, showing the tunnels that run parallel to the c axis.
b tunnel to a c tunnel are rectangular planes having shortest K-O distances of $2 \cdot 58,2 \cdot 52$, and $2 \cdot 69 \AA$, respectively, as shown in Fig. 2. Here we would expect the K^{+}ions to transport readily along both the b and c axes.

The same criterion can be applied to all tunnel structures. For instance, in the cubic perovskite structure, the bottle-neck is a square along the tunnels parallel to the principal axes. The alkali-oxygen distance in this square is half of the axis, or about $1.9 \AA$, which is just big enough for $\mathrm{H}-\mathrm{O}$ bonding or $\mathrm{Li}-\mathrm{O}$ bonding. This may explain why Vannice, Boudart \& Fripiat (1970) reported that the protons in high-surface-area $\mathrm{H}_{x} \mathrm{WO}_{3}$ were mobile at liquid-nitrogen temperature and why Whittingham \& Huggins (1972) found that $\mathrm{Li}_{x} \mathrm{WO}_{3}$ can be used as a lithium-ion reversible electrode, whereas Smith \& Danielson (1954) found an extremely low diffusion coefficient for cubic $\mathrm{Na}_{x} \mathrm{WO}_{3}$ even at elevated temperatures. Tetragonal $\mathrm{K}_{x} \mathrm{WO}_{3}$ (Magnéli, 1949) has two kinds of tunnels running along the c axis; one has a square bottle-neck similar in size to the cubic perovskite; another is a pentagon bottle-neck with a K-O distance of $2 \cdot 17 \AA$. It is obvious that K^{+}ions cannot move easily along these tunnels. Even a Na^{+}ion is too big to pass through the bottle-neck without some activation energy. Nevertheless, Whittingham \& Huggins (1971) report that tetragonal $\mathrm{Na}_{x} \mathrm{WO}_{3}$ can be used as a reversible electrode. On the other hand, the hexagonal $\mathrm{K}_{x} \mathrm{WO}_{3}$, with a six-sided bottle-neck having a shortest K - O distance of $2.87 \AA$, is a good K^{+}-ion conductor along the c axis (Whittingham \& Clark, 1970). In the hollandite structure, $\mathrm{Ba}_{x} \mathrm{Ti}_{8-x} \mathrm{Mg}_{x} \mathrm{O}_{16}$, the bottle-neck is a square having a shortest Ba-O distance of $2 \cdot 60 \AA$, which is big enough for a Ba^{2+} ion to transport (Dryden \& Wads-
ley, 1953). The $\operatorname{Im} 3-\mathrm{NaSbO}_{3}$ structure has a threesided bottle-neck along the diagonal tunnel with a shortest $\mathrm{Na}-\mathrm{O}$ distance of $2.40 \AA$, and the Na^{+}ion is mobile (Hong et al., 1973).
Whereas one-dimensional tunnels are probably not practical for polycrystalline membranes, because of interruption at grain boundaries, structures having two-dimensional and three-dimensional tunnel networks could be suitable.

The author is grateful to Dr J. B. Goodenough for helpful discussions, and to C. H. Anderson Jr for chemical preparations, data collections and technical assistance.

References

Aurivillius, B. (1966). Ark. Kem. 25, 505-514.
Dryden, J. S. \& Wadsley, A. D. (1953). Trans. Faraday Soc. 54, 1574-1580.
Goodenough, J. B. \& Kafalas, J. A. (1973). J. Solid State Chem. 6, 493-501.
Hong, H. Y.-P., Kafalas, J. A. \& Goodenough, J. B. (1973). J. Solid State Chem. In the press.

Magnéll, A. (1949). Ark. Kem. 1, 213-221.
Smith, J. F. \& Danielson, G. E. (1954). J. Chem. Phys. 22, 266.

Spiegelberg, P. (1940). Ark. Kem. 14A, 1-12.
Vannice, M. A., Boudart, M. \& Fripiat, J. J. (1970). J. Catal. 17, 359.
Whittingham, M. S. \& Clark, L. D. (1970). J. Chem. Phys. 53, 4114-4115.
Whittingham, M. S. \& Huggins, R. A. (1971). J. Chem. Phys. 54, 414-416.
Whittingham, M. S. \& Huggins, R. A. (1972). Solid State Chemistry, Proceedings of 5th Materials Research Symposium. Edited by R. S. Roth \& S. J. Schneider. NBS Special Publication 364, pp. 139-154.

Acta Cryst. (1974). B30, 952

Structure Cristalline du Sulfure de Néodyme et d'Ytterbium, $\mathbf{N d Y b S}_{3}$

Par Daniel Carré et Pierre Laruelle
Laboratoires de Physique et de Chimie Minérale (équipe associée au CNRS), Faculté des Sciences Pharmaceutiques et Biologiques de Paris-Luxembourg, 4 Avenue de l'Observatoire, 75270 Paris Cedex 06, France

(Reşu le 6 novembre 1973, accepté le 23 novembre 1973)
Crystals of neodymium ytterbium sulphide, NdYbS_{3}, belong to the orthorhombic system, $a=$ $12 \cdot 545, b=9 \cdot 438, c=3.853 \AA$, space group $B 22_{1} 2, Z=4$. The structure was solved from the Patterson function and refined to $R=0.047$. The ytterbium atoms are six-coordinated and the neodymium atoms eight-coordinated. The structure exhibits coordination polyhedra very similar to those in the yttrium sulphide, $\mathrm{Y}_{5} \mathrm{~S}_{7}$, structure described by Adolphe [Ann. Chim. (1965). 10, 271-275].

Introduction

L'étude systématique des sulfures doubles de terres rares a conduit Khodadad \& Vo Van Tien (1969) à isoler une phase nouvelle à partir d'un mélange en
quantité équimoléculaire de $\mathrm{Yb}_{2} \mathrm{~S}_{3}$ et de $\mathrm{Nd}_{2} \mathrm{~S}_{3}$. Ce mélange est chauffé en tube scellé à $1000^{\circ} \mathrm{C}$ pendant deux jours. Des cristaux suffisamment gros s'obtiennent en laissant pendant un mois, à $850^{\circ} \mathrm{C}$, de la poudre cristalline dans du bromure de potassium fondu.

[^0]: * This work was sponsored by the Department of the Air Force and by NASA Contract C-43205-C.

